

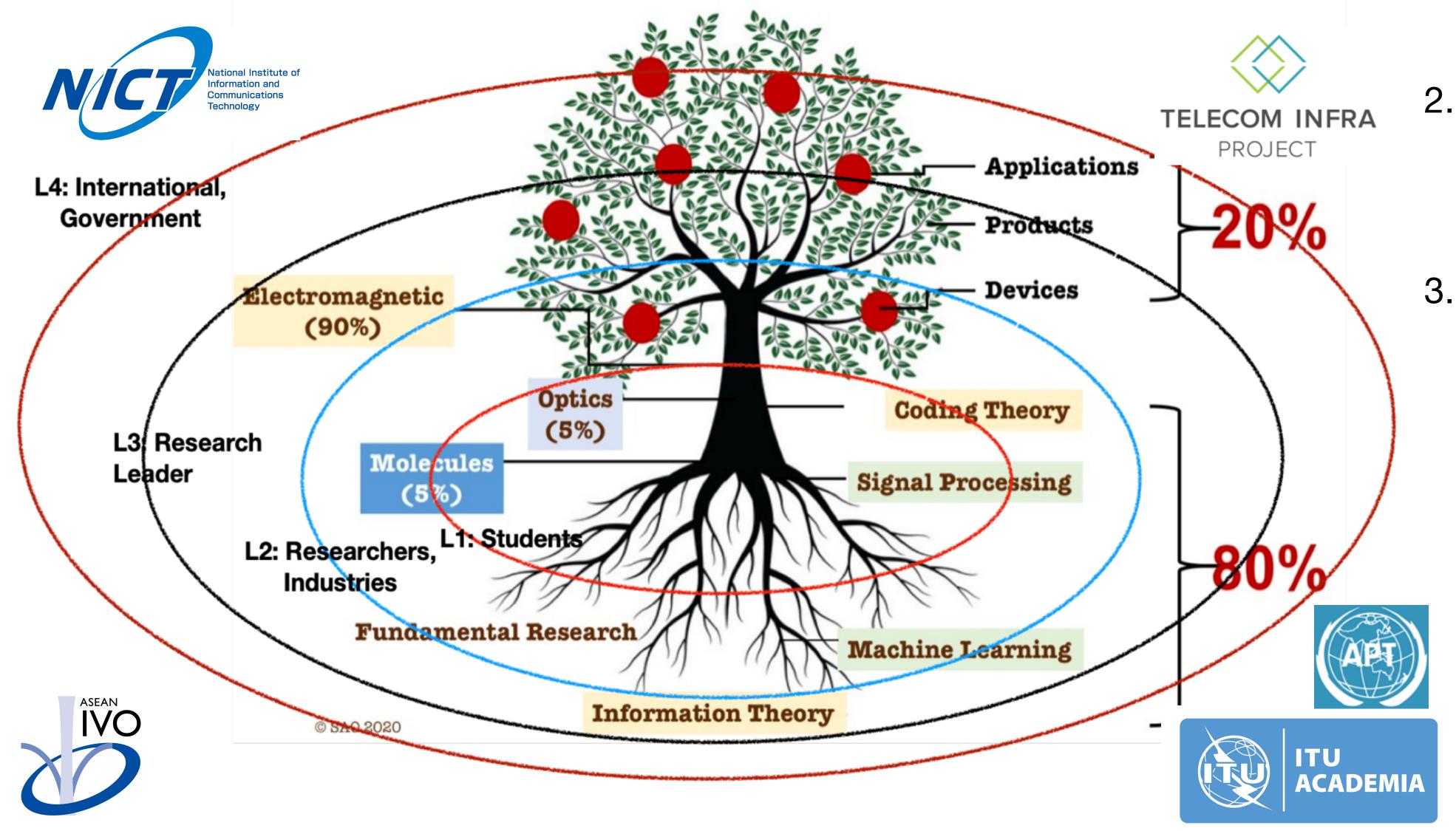
Dr. Eng. Khoirul Anwar, ST., M.Eng.^{1,2,3}

¹Director, The University Center of Excellence for Advanced Intelligent Communications (AICOMS), Telkom University, Bandung, Indonesia

²Vice-Chairman of Asia-Pacific Wireless Group (AWG), Bangkok, Thailand

³Chairman of Technical and Education Activities (TEA),

IEEE Indonesia Section, 2020


E-mail: anwarkhoirul@telkomuniversity.ac.id

Presented at Workshop of LPDP Propoposal Writing 2021/2022 Bandung (Virtual), Tel-U, 27 May 2021

Vision and Mision: 4 Levels of Influences

 Becoming one of the world-class leading research center in the field of Advanced Intelligent Communications

- Developing model for ideal collaborative research.
- 2. Enhancing research quality towards world-class recognition.
- 3. Enhancing research collaboration with other universities, industry, start-up company, and goverment to build world-class leading research center in the field of Advanced Intelligent Communications.

PUI-PT AICOMS: Research Roadmap

5G, Transportation, and AI

- AdWiTech menjadi PU-PT AiCOMS dan mulai develop Albased Comm.
- Milestone: Projek
 PATRIOT-Net,
 ANTASENA, Projek
 PATRIOT-41R-Net,
 Projek Smart
 Surveillance

Product of 5G and Developed Al-based 6G

- PUI AiCOMS
 memiliki produk final
 5G dan matang
 dalam Al-based 6G.
- Milestone: Produk
 PATRIOT-Net, Smart
 Surveillance, image
 Hologram, Project
 VR/AR, Autonomous
 Car

2022

Initial Product of Al-based 6G

- PUI AiCOMS
 memiliki awal 6G
 produk berskala
 nasional dan
 internasional.
- Milestone:
 Mendapat Projek
 International 6G,
 Prototype Al based 6G

5G and IoT

2019

- AdWiTech
 menjadi lembaga
 riset nasional
 untuk 5G dan IoT.
- Milestone: Projek
 PATRIOT-Net,
 ANTASENA,
 Projek ZEBRA
 CODES

2020

Product of 5G and Basic Al-based 6G

- PUI AiCOMS memiliki produk 5G dan pengembangan Albased 6G
- Milestone: Produk
 PATRIOT-Net,
 PATRIOT-41R-Net,
 Smart Surveillance,
 image Hologram

Advanced Al-based 6G

PUI AiCOMS
 memiliki riset dan
 teknologi matang
 untuk diusulkan
 sebagai Al-based
 6G.

2023

Milestone: Produk
 PATRIOT-Net, Al based 6G menjadi
 dokumen standard
 International

Products of Albased 6G

- PUI AICOMS menjadi salah satu PUI/RC terdepan berskala internasional dalam AI-based 6G.
- Milestone: Mendapat Projek International 6G, Menghasilkan Produk Al-based 6G

National and International Projects Experience Alcoms Alcoms

- 1. RISPRO LPDP PATRIOT-Net Year II 2020-2021 (as Principal Investigator (PI))
- 2. ADA-DIKTI-MCRBS 2020 (as Principal Investigator (PI))
- 3. International Research Grant of ASEAN IVO 2019–2021 (as Principal Investigator (PI))
- RISPRO LPDP PATRIOT-Net Year I 2020-2021 (as Principal Investigator (PI))
- Research Grant of EPSRC Global Challenges Research Fund 2017, Sept. 1, 2017– March 2018 as (as Co-PI)
- Research Grant of Penelitian Hibah International, Telkom University, 2016-2019 (as PI).
- 7. JSPS Grant-in-Aid for Scientific Research 2013–2017 (STAR-CODES) (as PI)
- European Commision, 7th Framework Programme, RESCUE 2013-2016 (as Co-PI)
- 9. JSPS Grant-in-Aid for Scientific Research 2011–2014 (Connect All with Turbo Codes: COATNET-2) (as Co-PI)
- 10.JSPS Grant-in-Aid for Scientific Research 2010–2013 (CODE-SWAN) (as PI)
- 11. Research Grants 2011–2012 on "Turbo Equalization for Single Carrier Frequency Division Multiple Access (TURBO-FREMA)" (as PI)
- 12. Research Grants 2009–2012 on "Chained Turbo Equalization for Block Transmission (CHATUE)", (as a principal investigator) Kinki Mobile Radio Center (MRC) (as PI)

Strategy to Obtain RISPRO LPDP Funding

- Definition: A plan of action designed to achieve a long-term or overall aim.
- 1. Good Proposal as a whole
- 2. Convincing Partners
 - Partner 1: Manufactures and
 - Partner 2: Users
- 3. Clear Output
- 4. Good Work Package
- 5. Good Project Management
- 6. Good Abstract
- 7. Good Figure
- 8. Convincing Data

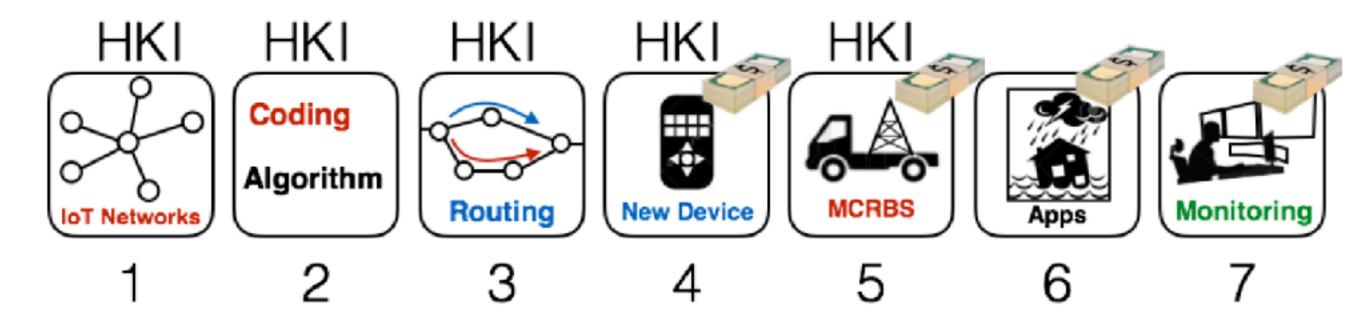


Fig. 3 Tujuh luaran proyek PATRIOT-Net: Luaran 1-5 berpotensi untuk dipatenkan (HKI),

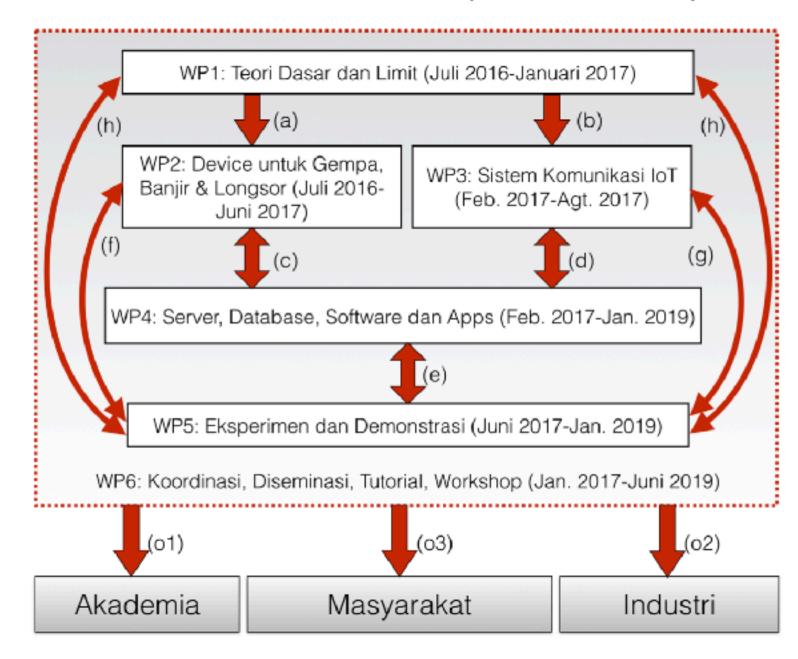


Fig. 13 Hubungan antar work package (WP) serta output untuk akademia, industri dan masyarakat. (Sumber Gambar: K. Anwar, 2016).

1. Good Proposal as A Whole

- No Typo
- Good Grammar
- Clear Picture —> Do not copy from internet
- Good Acronym —>
 easy to refer and call
 in the explanation.

PROPOSAL RISET

Program Bantuan Dana Riset Inovatif-Produktif

Lembaga Pengelola Dana Pendidikan (RISPRO LPDP)

PATRIOT-Net: Prevention and Recovery Networks for Indonesia Natural Disasters based on the Internet-of-Things (IoT)

KELOMPOK PERISET

- 1. Dr. Eng. Khoirul Anwar, S.T., M. Eng.
- 2. Ir. Achmad Ali Muayyadi, M. Sc., PhD.
- Dr. Muhammad Ary Murti, S.T., M.T.
- 4. Ekki Kurniawan, S.T., M.T.
- Ratna Mayasari, S.T., M. T.
- 6. Budi Syihabuddin, S.T., M.T.
- 7. Ramdhan Nugraha, S.Pd., M.T.
- 8. Unang Sunarya, S.T., M. T.
- 9. Yan Syafri Hidayat, S.T.
- Rico Candra Negoro, S. Pd.

LEMBAGA RISET/PERGURUAN TINGGI

- Universitas Telkom
- PT. Fusi Global Teknologi
- Pemerintah Kota Padang

Lembaga Pengelola Dana Pendidikan Kementerian Keuangan Tahun 2016

Lembaga Pengelola Dana Pendidikan (RISPRO LPDP)

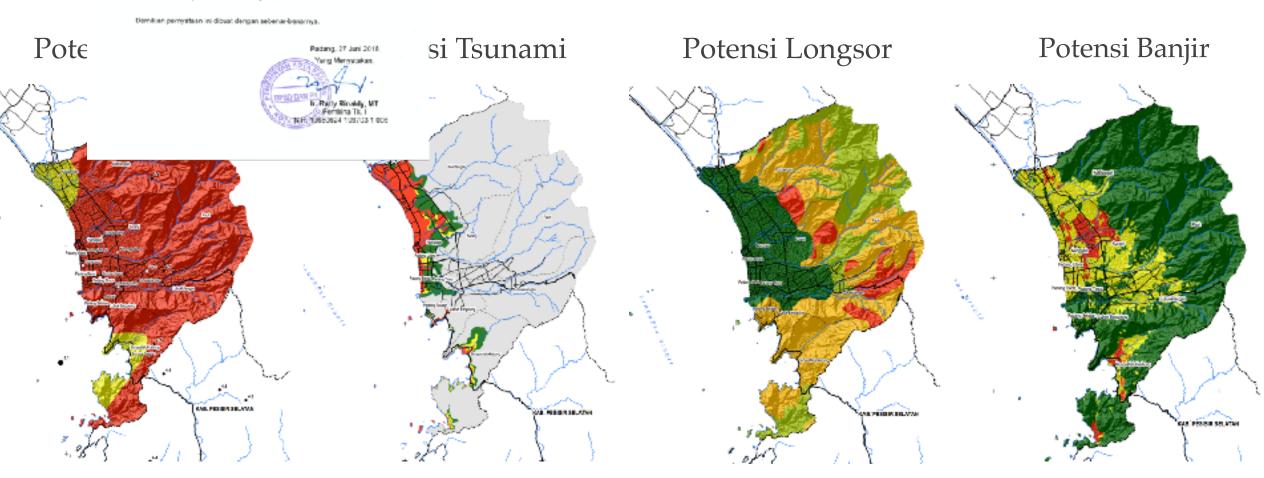
PATRIOT-Net: Prevention and Recovery Networks for Indonesia Natural Disasters based on the Internet-of-Things (IoT)

DAFTAR ISI

ABSTRAK	
BAB I. PENDAHULUAN	6
BAB II. STUDI PUSTAKA	10
A. Teknologi Device	
B. Teknologi Komunikasi	
C. Teknologi Networking	
D. Perbandingan dengan Teknologi loT Lainnya	
E. Kaitan dengan Proyek Lain	
BAB III. METODE RISET	13
A. Work Packages (WP)	
WP1: Teori Dasar dan Limit	
WP2: Device Baru	
WP3: Sistem Komunikasi	
WP4: Server, Software dan Apps	
WP5: Eksperimen dan Demonstrasi	
WP6: Koordinasi, Diseminasi, Tutorial, dan Workshop	
B. Hubungan Antar Work Package	
C. Manajemen Proyek	
BAB IV. LUARAN	36
BAB V. PENDANAAN	41
Tahun I	
Tahun II	
Tahun III	
Pernyataan:	4
DAFTAR PUSTAKA	44
LAMPIRAN	46

2. Convincing Partners

Potency of Mitra 1: OFUSI PT. Fusi Global Teknologi



* Strong in Product Makers, National and International

Partner 1: Strong in Production and need to grow

Partner 2: Strong in Adoption of Technology

2. Convincing Partners (2/2)

SURAT PERNYATAAN KESANGGUPAN

SEBAGAI MITRA RISET INOVATIF PRODUKTIF (RISPRO)

Yang bertanda tangan di bawah ini,

nama : Yan Syafri Hidayat jabatan : Direktur Utama

nama perusahaan : PT. Fusi Global Teknologi

alamat : Jl. R.A.A. Martanegara No.56, Bandung

menyatakan bahwa saya memiliki komitmen, kemampuan, dan kesanggupan untuk memberikan dukungan penuh serta bekerja sama sebagai mitra riset dengan topik:

PATRIOT-Net: Prevention and Recovery Networks for Indonesia Natural

Disasters based on the Internet-of-Things (IoT)

Hal-hal yang mengatur peran/kontribusi dan tanggung jawab dalam kerja sama tersebut akan didiskusikan secara terperinci pada perjanjian terpisah dan berdasarkan kesepakatan kedua belah pihak.

Demikian pernyataan ini dibuat dengan sebenar-benarnya.

Bandung, 21 Juni 2016

Yan Syafr Hidayat, S.T.

Office: Jl. R.A.A. Mertanegera No. 56 Bandung 40275
Phone: +82-22-9283-0695 | www.fusi.co.id | email: info@fusi.co.id

PAKTA INTEGRITAS

Saya yang bertanda tangan di bawah ini:

ama : Yan Syafri Hidayat

NIP :

Instansi : PT. Fusi Global Teknologi

: Kelompok

Bertindak untuk dan atas nama

3

bekerjasama dengan Lembaga Pengalola Dana Pendidikan (LPDP) dalam rangka melaksanakan riset yang berjudul "PATRIOT-Net: Prevention and Recovery Networks for Indonesia Natural Disasters based on the Internet-of-Things (IoT)", dengan ini menyatakan bahwa:

- tidak akan melakukan praktek Korupsi, Kolusi, dan Nepotisme (KKN) dalam pelaksanaan riset dan penggunaan bantuan dana riset dari LPDP;
- memiliki komitmen, kemampuan, dan kesanggupan untuk memberikan hasil terbaik dalam pelaksanaan riset sesuai dengan waktu yang telah ditetapkan oleh LPDP;
- proposal riset berjudul "PATRIOT-Net: Prevention and Recovery Networks for Indonesia Natural Disasters based on the Internet-of-Things (IoT)" yang diusulkan bersifat orisinal dan belum mendapat sumber pendanaan lain;
- tidak sedang mengikuti kegiatan akademik lain yang dapat mengganggu keberhasilan/kesuksesan pelaksanaan riset; dan
- apabila melanggar hal-hal yang dinyatakan dalam PAKTA INTEGRITAS ini, bersedia menerima sanksi administratif, menerima sanksi pencantuman dalam media massa, digugat secara perdata dan/atau dilaporkan secara pidana.

Bendung, 22 Juni 2016 Yang Menyatakan,

O

Yan Syafri Hidayat, S.T.

PEMERINTAH KOTA PADANG BADAN PENANGGULANGAN BENCANA DAERAH DAN PEMADAM KEBAKARAN

Jl. Rasuna Said No. 56 Telp. (0751) 33322 - 28558, Fax (0751) 33322 Padang

SURAT PERNYATAAN KESANGGUPAN SEBAGAI MITRA RISET INOVATIF PRODUKTIF (RISPRO)

Yang bertanda tangan di bawah ini,

Nama : Ir. Rudy Rinaldy, MT Jabatan : Kepala Pelaksana

Nama instansi : Badan Penanggulangan Bencana Daerah dan Pemadam

Kebakaran Kota Padang

Alamat : Jl. Legislatif I No. 20 A RT 05 RW 06, Kampung Lapai,

Kecamatan Nanggalo

menyatakan bahwa saya memiliki komitmen, kemampuan, dan kesanggupan untuk memberikan dukungan penuh serta bekerja sama sebagai mitra riset dengan topik:

"Prevention and Recovery Networks for Indonesia Natural Disasters based on Internet of Things (IoT)"

Hal-hal yang mengatur peran/kontribusi dan tanggung jawab dalam kerja sama tersebut akan didiskusikan secara terperinci pada perjanjian terpisah dan berdasarkan kesepakatan kedua belah pihak.

Demikian pernyataan ini dibuat dengan sebenar-benarnya.

Padang, 27 Juni 2016 Yang Menyatakan,

Ir. Rudy Rinaldy, MT Pembina Tk. I NIR 19680624 199703 1 006

PAKTA INTEGRITAS

Saya yang bertanda tangan di bawah ini:

Nama : Ir. Rudy Rinaldy, MT

NIP : 19680624 199703 1 006

Badan Penanggulangan Bencana Daerah dan Pemadam

Kebakaran Kota Padang

Bertindak untuk : Kelompok (Instansi)

dan atas nama

Instansi

bekerjasama dengan Lembaga Pengelola Dana Pendidikan (LPDP) dalam rangka melaksanakan riset yang berjudul "Prevention and Recovery Networks for Indonesia Natural Disasters based on Internet of Things (IoT)", dengan ini menyatakan bahwa:

- tidak akan melakukan praktek Korupsi, Kolusi, dan Nepotisme (KKN) dalam pelaksanaan riset dan penggunaan bantuan dana riset dari LPDP;
- memiliki komitmen, kemampuan, dan kesanggupan untuk memberikan hasil terbaik dalam pelaksanaan riset sesuai dengan waktu yang telah ditetapkan oleh LPDP:
- proposal riset berjudul "Prevention and Recovery Networks for Indonesia Natural Disasters based on Internet of Things (IoT)" yang diusulkan bersifat orisinal dan belum mendapat sumber pendanaan lain;
- tidak sedang mengikuti kegiatan akademik lain yang dapat mengganggu keberhasilan/kesuksesan pelaksanaan riset; dan
- apabila melanggar hal-hal yang dinyatakan dalam PAKTA INTEGRITAS ini, bersedia menerima sanksi administratif, menerima sanksi pencantuman dalam media massa, digugat secara perdata dan/atau dilaporkan secara pidana.

Padang, 27 Juni 2018 Yang Menyatakan,

In Distriction

Partner 1: Strong in Production and need to grow

Partner 2: Strong in Adoption of Technology

8

3. Clear Output

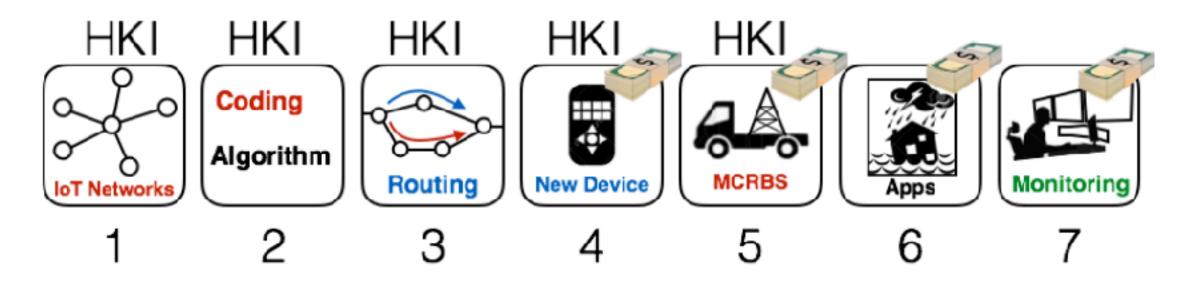
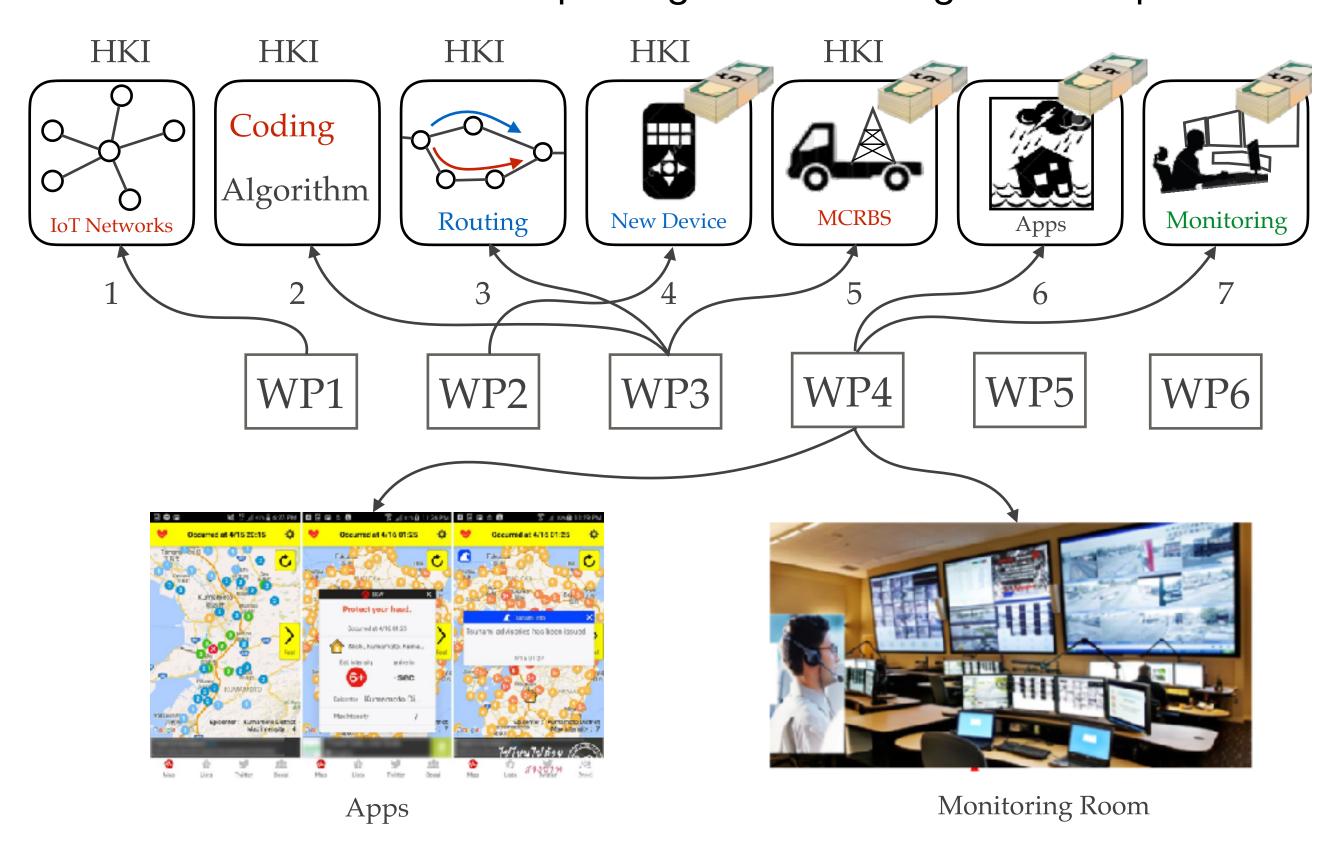
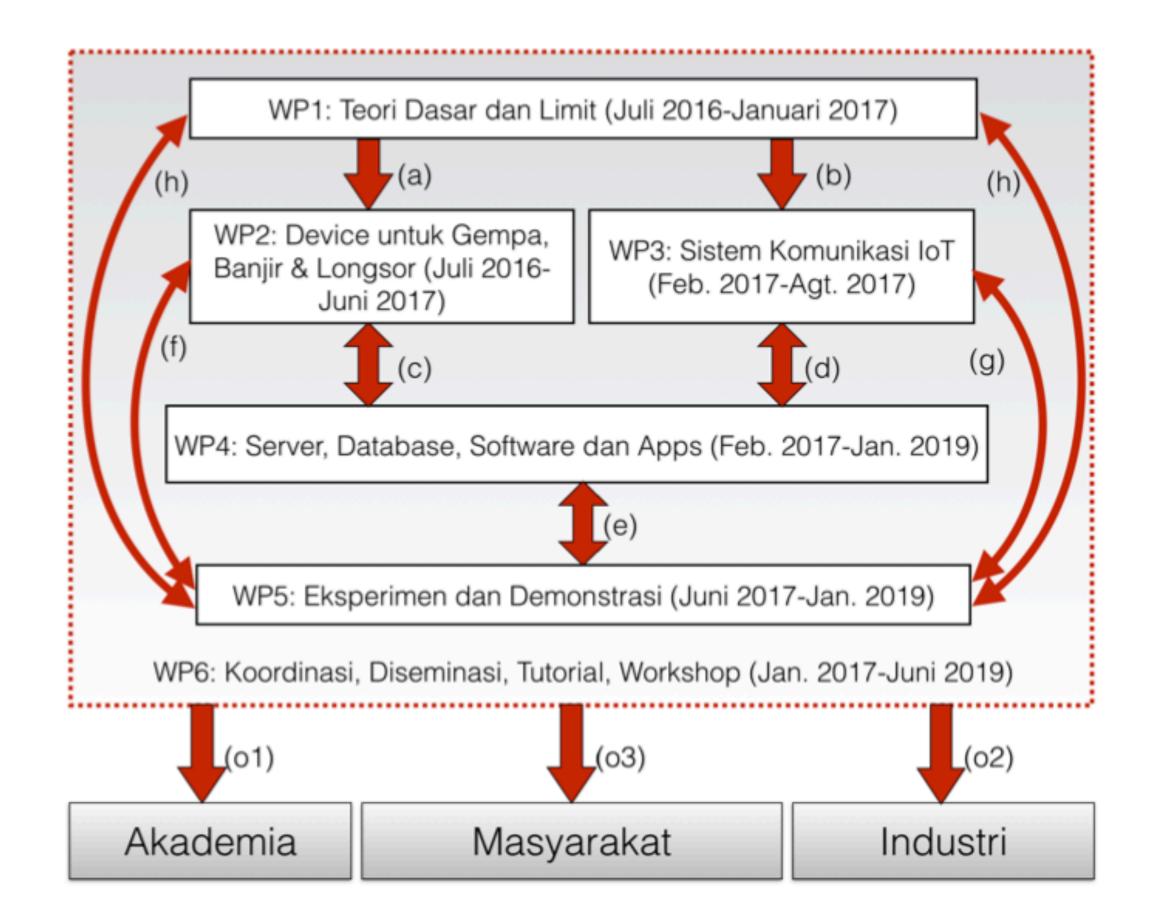


Fig. 3 Tujuh luaran proyek PATRIOT-Net: Luaran 1-5 berpotensi untuk dipatenkan (HKI), dan luaran 4-7 berpotensi untuk dikomersialkan. (Sumber gambar: K. Anwar, 2016).

Tabel 3. Luaran proyek PATRIOT-Net dan pemetaannya

No.	Luaran	HKI	Strategis	Komersial	Potensi Pengguna
1.	Optimal IoT networks Optimal IoT networks	Ya	Ya	-	Akademia, Industri
2.	Algoritma error correction network coding Coding Algorithm	Ya	Ya	-	Akademia, Industri
3.	Teknik routing berbasis graph untuk recovery networks	Ya	Ya	-	Akademia, industri


	Routing				
4.	Device baru untuk loT kompatibel teknologi 5G	Ya	Ya	Ya	Akademia, Industri, Masyarakat
5.	Mobile cognitive radio base station (MCRBS)	Ya	Ya	Ya	Akademia, industri, Masyarakat
6.	Apps berbiaya murah untuk masyarakat	-	Ya	Ya	Industri, Masyarakat
7.	Sistem monitoring gempa, tsunami, banjir dan tanah longsor (diinstall di tempat pemegang kebijakan, misalnya badan kebencanaan milik pemerintah.)	-	Ya	Ya	Industri, Pemerintah
	Monitoring				9



4. Good Work Packages

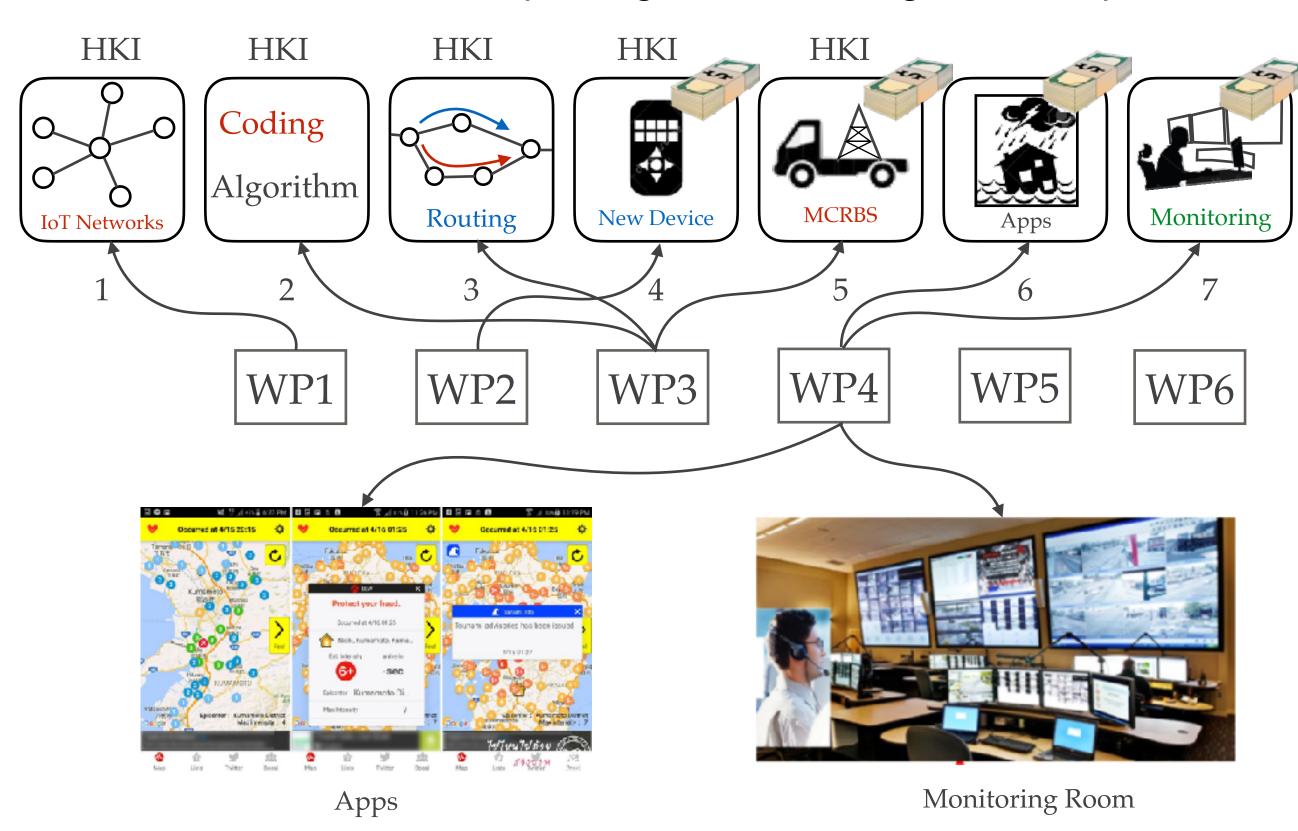
Research Outcomes

• PATRIOT-Net has 7 work packages with 5 IP rights and 4 products.

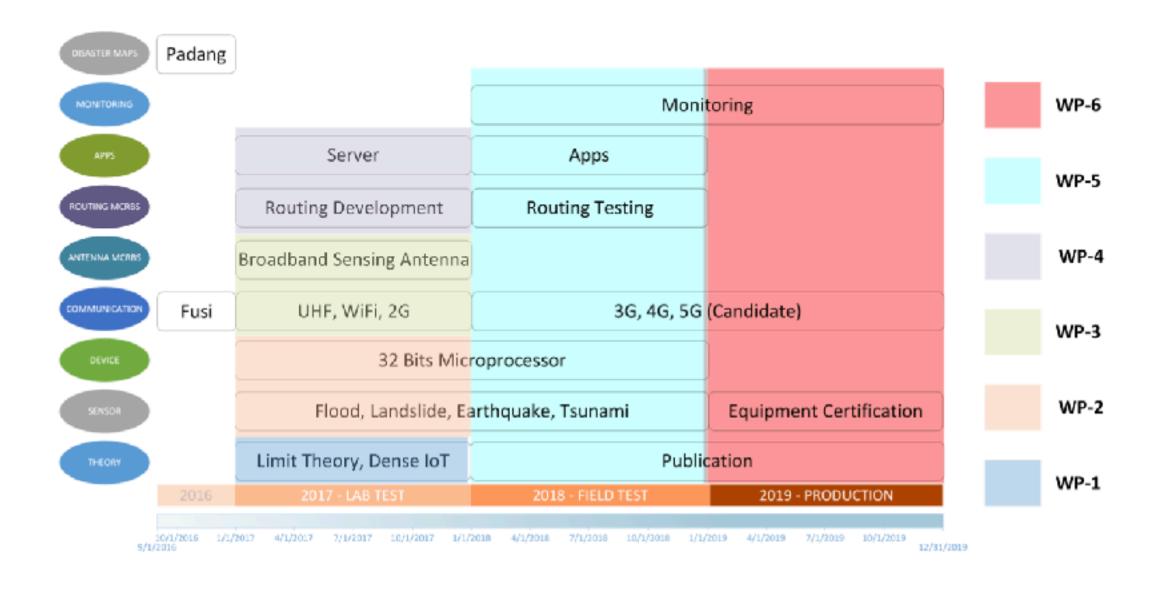
4. Good Work Package (2/2): Specification

Tabel 4. Korelasi kegiatan dan luaran proyek PATRIOT-Net.

Tahun	Kegiatan	Luaran	Spesifikasi				
	WP1: Teori Dasar dan Limit	Optimal IoT Networks	Didapat rumus degree				
			optimal wireless IoT				
			Networks				
	WP2: Device Baru	Device baru untuk IoT	- Device sensing 4 bencana				
			dapat mendeteksi bencana				
			dengan peluang sukses 90%.				
			- Modul komunikasi dapat				
			mengirimkan data dengan				
1			peluang sukses 95% dan				
			delay kurang dari 10 detik.				
	WP3: Sistem Komunikasi	Algoritma error correction	Mampu menampilkan data,				
		network coding	bisa dicoba langsung secara				
	WP4: Server, Software dan Apps	Apps dan Monitoring room	live				
			Meeting evaluasi terlaksana,				
			6 conference (accepted), 2				
	WP6: Koordinasi, Diseminasi,	Meeting I, conference, journal	journal (submitted)				
	Tutorial dan Workshop						
	WP4: Server, Software dan Apps	Apps dan Monitoring room	Mampu menampilkan data				
	φρο		berdasarkan kewenangan				
			user, dan aman (secure)				
			Lolos				
	WP5: Eksperimen dan	Sertifikasi produk	Sukses				
III	Demonstrasi	Pemasangan di Kota Padang					
	WP6: Koordinasi, Diseminasi,	Meeting III, conference,	Meeting evaluasi terlaksana,				
	Tutorial dan Workshop	journal, workshop, kuisioner	6 conference (accepted), 2				
			journal (accepted),				
			workshop terlaksana, hasil				
			kuesioner baik.				


	WP2: Device Baru	Device baru untuk IoT	- Device IoT siap untuk mass production
I	WP3: Sistem Komunikasi	Algoritma error correction network coding dan MCRBS	-Kompatible untuk generasi telekomunikasi (termasuk 5G) dan heterogeneous networks Mampu menampilkan data berdasarkan kewenangan user, dan aman (secure) - MCRBS bisa mendeteksi device yang masih hidup setelah bencana terjadi dengan akurasi 90% dan meroutingkan ke jaringan normal dengan memilih device yang memiliki power paling besar dengan peluang sukses juga 90%.
	WP4: Server, Software dan Apps	Apps dan Monitoring room	Berbagai skenario sukses
	WP5: Eksperimen dan Demonstrasi	Kriteria pengujian	Meeting evaluasi terlaksana, 6 conference (accepted), 2
	WP6: Koordinasi, Diseminasi, Tutorial dan Workshop	Meeting II, conference, journal	journal (accepted), 2 journal submitted.

5. Good Project Management


Research Outcomes

PATRIOT-Net has 7 work packages with 5 IP rights and 4 products.

Tabel 1. Jadwal Meeting untuk laporan perkembangan riset dan evaluasi tiap WP

	Meeting 1:	Meeting 2:	Meeting 3:
Waktu	Tahun I Bulan 6	Tahun II Bulan 6	Tahun III Bulan 6
Tempat	Telkom University, Bandung	Fusi Global Teknologi, Bandung	Pemerintah Kota Padang, Padang

6. Good Abstract

- Abstract is a Shop Window
- Busy reviewer just focuses on Absract

ABSTRAK

Proyek penelitian PATRIOT-Net: Prevention and Recovery Networks for Indonesia Natural Disasters based on the Internet-of-Things (IoT) ini mengusulkan jaringan the Internet-of-Things (IoT) Indonesia untuk kebencanaan nasional yang: (a) melayani komunikasi antar puluhan/ratusan perangkat monitoring devices, (b) mendukung beragam (heterogeneous) trafik, dari kecepatan rendah, seperti sensor, sampai kecepatan tinggi seperti video pemantauan, dan (c) memberikan recovery cepat dengan routing berdasarkan graph dan cognitive radio untuk recovery jaringan pasca bencana berbasis mobile cognitive radio base-station (MCRBS) yang akan menjadi salah satu luaran unggulan dalam proyek ini. Luaran proyek ini juga diarapkan mampu menjadi petunjuk awal dalam menyelesaikan permasalahan telekomunikasi masa depan, yaitu bagaimana menaikkan prioritas atas trafik yang penting dan urgen, seperti trafik yang menyangkut keselamatan manusia dan keamanan, misalnya trafik komunikasi mobil ambulans dan kepolisian, di atas trafik datadata biasa yang berasal dari sensor-sensor, misalnya suhu, iklim, ataupun data yang tidak terlalu mendesak tetapi berjumlah puluhan, ratusan, bahkan ribuan, yang dikhawatirkan mengalahkan trafik penting komunikasi manusia.

loT menjadi topik utama proyek PATRIOT-Net ini karena teknologi loT ini akan datang bersamaan dengan teknologi 5G pada 2020, menggunakan *machine-to-machine (M2M) communications*, yang akan berdampak pada 2/3 ekonomi global (diperkirakan sebesar 3.9 - 11.1 trilyun USD). Aplikasi loT ini meliputi transportasi (*connected vehicle*), *smart city* (keamanan, kemacetan lalulintas), energi dan pemanfaatannya (manajemen, listrik, gas, air), retail (*smart vending machine*), logistik (pelacakan dan pencatatan barang), kesehatan (*telemedicine*), manufaktur (*remote manufacturing*), wearable (*smart watch*), sampai layanan finansial (*usage-base insurance*).

Target proyek PATRIOT-Net ini terbagi atas dua bagian, yaitu (a) jangka pendek, berupa jaringan IoT kebencanaan nasional, yaitu monitoring dan pencegahan (prevention) kerusakan dan pemulihan jaringan (recovery network) diakibatkan oleh bencana alam terutama, banjir, tsunami gempa bumi, tanah longsor, karena manfaat IoT sangat terasa untuk kebencanaan dan langsung berdampak kepada kehidupan manusia, dan (b) jangka panjang yaitu desain optimal IoT Networks yang diturunkan dari coding and information theory dan constraint kondisi riil (channel) alam Indonesia beserta potensi bisnis perangkat, aplikasi, dan layanan IoT (di luar kebencanaan) yang berdampak pada ekonomi nasional sampai ketahanan negara, seperti monitoring hutan dan wilayah Indonesia dengan drone maupun balon udara yang mampu dikontrol melalui jaringan IoT. Dengan basis coding

theory dan network information theory yang dikembangkan untuk puluhan/ratusan/ribuan devices, proyek PATRIOT-Net ini diharapkan mampu memprioritaskan data human atas data machine.

Dalam tiga tahun terdekat (2017-2020), tantangan jangka pendek PATRIOT-Net adalah bagaimana jaringan loT yang diusulkan mampu memberi peringatan secara akurat, murah, serta bagaimana jaringan bisa melakukan *recovery* dalam waktu yang singkat pasca bencana, saat *base station utama (existing)* telah hancur atau tidak lagi berfungsi, seperti matinya seluruh *base station* di Jepang saat terjadinya gempa Sanriku bermagnitude 10 dan tsunami tahun 2012. Dengan target jangka pendek ini, PATRIOT-Net bekerja dengan persentasi 50:50, yaitu 50% inovasi dalam *device*-nya dan 50% inovasi dalam teknologi komunikasi dan *network reliability*-nya.

Dengan bekerja bersama dua mitra dari industri dan pemerintahan, yaitu PT. FUSI Global Teknologi dan Badan Penanggulangan Bencana Daerah dan Pemadam Kebakaran (BPBD-PK) Kota Padang, proyek PATRIOT-Net ini diharapkan makin kuat dengan luaran yang bermanfaat untuk akademisi, industri/perusahaan, dan masyarakat yaitu berupa:

- (1) desain optimal IoT networks beserta teori limit maksimumnya (bound),
- (2) algoritma error correction network coding untuk IoT Networks yang mampu meminimalkan delay, konsumsi energi, tetapi memaksimalkan throughput,
- (3) teknologi routing berdasarkan *graph* untuk *loT recovery networks* (bisa diterapkan per daerah dan nasional),
- (4) pembuatan *device* yang sesuai dengan teknologi loT dan kompatibel dengan teknologi 5G saat nanti digelar di Indonesia,
- (5) perangkat baru berupa MCRBS yang memiliki dua manfaat sekaligus yaitu untuk daerah pasca bencana, dan daerah aman pelosok yang belum terjangkau teknologi komunikasi,
- (6) pembuatan aplikasi *app*s berbayar (murah) untuk *waming* gempa, tsunami, banjir, dan tanah longsor, yang bisa diset lokal dan nasional (Apps ini diharapkan berfungsi mirip dengan aplikasi *yurekuru* di Jepang, bahkan lebih baik dan memiliki banyak fungsi), dan
- (7) sistem monitoring bencana yang hanya boleh diinstall di tempat pemegang kebijakan, seperti badan penanggulangan bencana milik pemerintah.

7. Good Figures

AICUMS The University Center of Excellence for Advanced Intelligent Communications - Telkom University

All figures should be original

Fig. 2 Model untuk menyelesaikan problem komunikasi yang melibatkan puluhan/ratusan bahkan ribuan device dalam loT networks: (a) dengan single relay, (b) dengan multiple relay. (Sumber Gambar: K. Anwar, 2016)

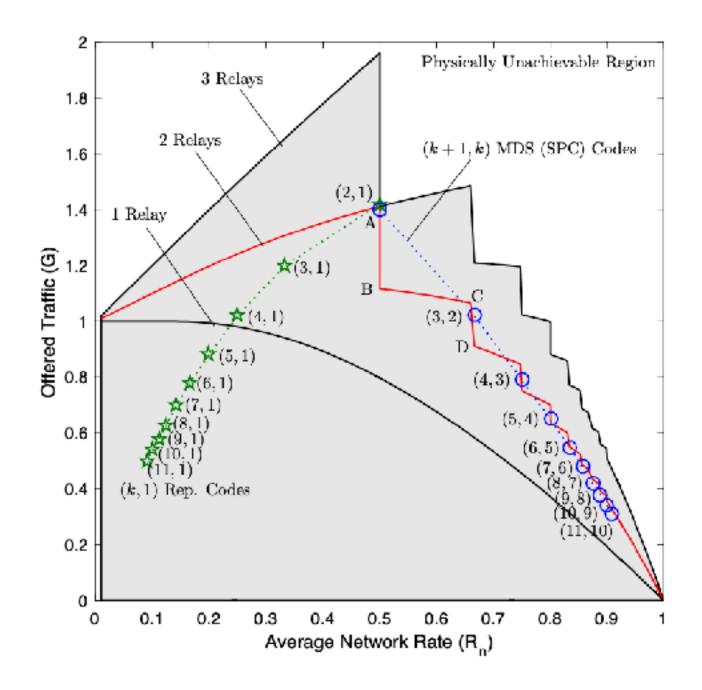
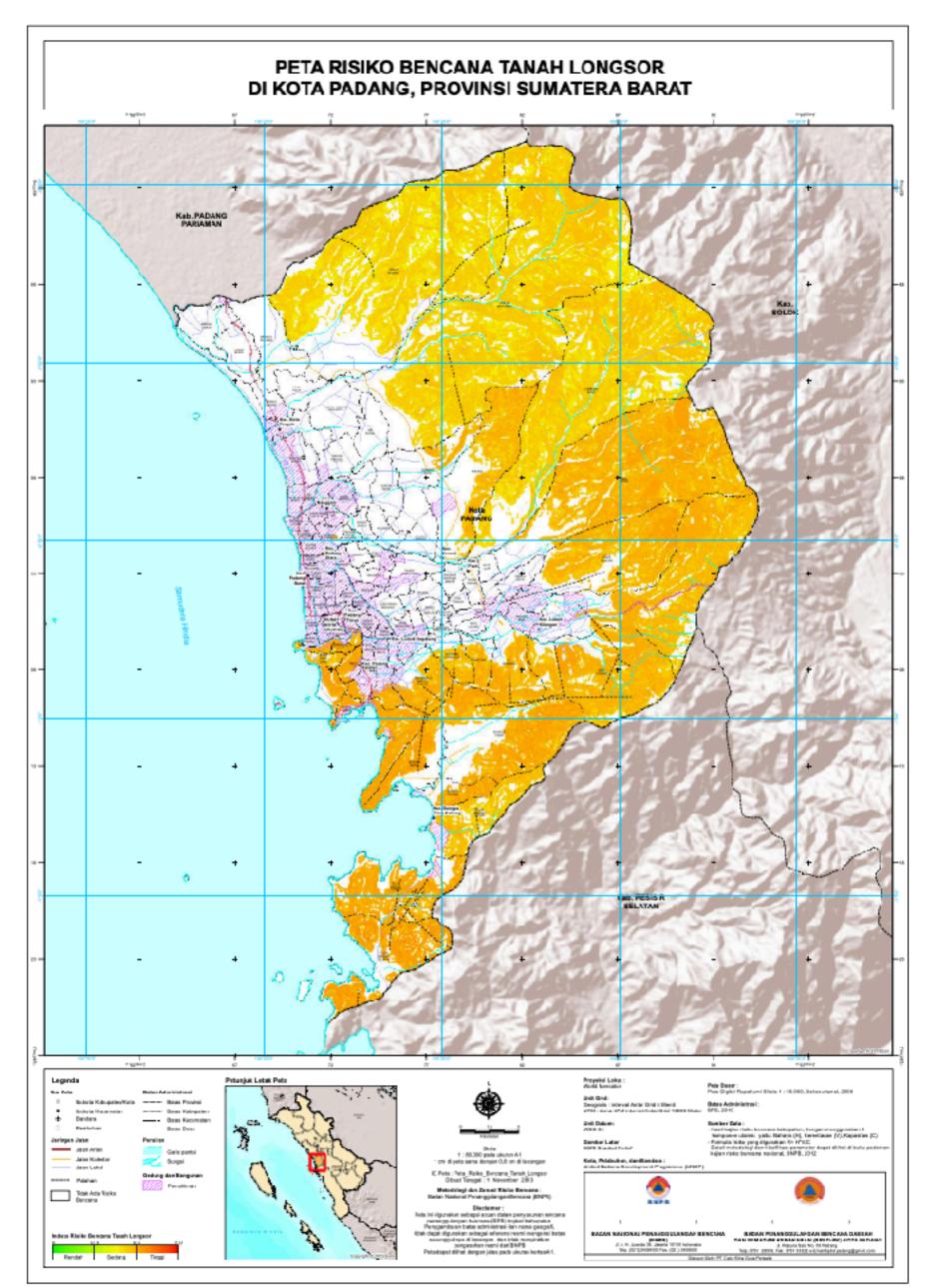


Fig. 5 Kapasitas network jaringan IoT yang berhasil dinaikkan dengan memanfaatkan multiple relay. (Sumber gambar: K. Anwar, 2016a).

$$\frac{R}{1+QR} + \left(\frac{R}{G}\right)e^{-\frac{G}{R}} - \frac{R}{G} < 0,$$

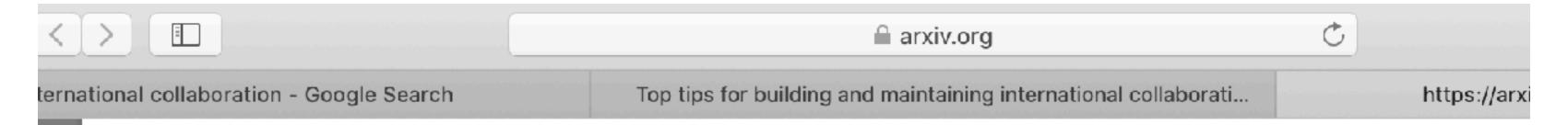
dengan Q adalah jumlah relay atau jumlah station pengumpul data sensing, G adalah rasio antara jumlah sensor dengan slot waktu yang diberikan dan R adalah kecepatan pengulangan.



Realistic and Logic

Lokasi Pemasangan Alat Deteksi dan Jumlahnya di Daerah Rawan Bencana KOTA PADANG (Detail lokasi silakan merujuk pada Lampiran i).

No.	Sensor	Lokasi Pemasangan Alat deteksi	Jumlah
1.	Tsunami	 Muaro Batang Anai Teluk Bayur Muaro Batang Kuranji Muaro Penjalinan Pelabuhan Bungus 	6
2.	Gempa	6. Air Pacah 7. Gor H. Agus Salim 8. UNP 9. Lubuk Kilangan	4
3.	Banjir	10. Nanggalo 11. Pintu Air Gunung Nago 12. Rawang Mata Air	5
	Banjir Bandang	13.Batu Busuk 14.Limau Manis Selatan 15.Timbalun	
4.	Longsor	16.Bukit Gado-gado 17.Panorama Sitinjau Laut 18.Gates	12
		Jumlah	27



Additional Strong Points

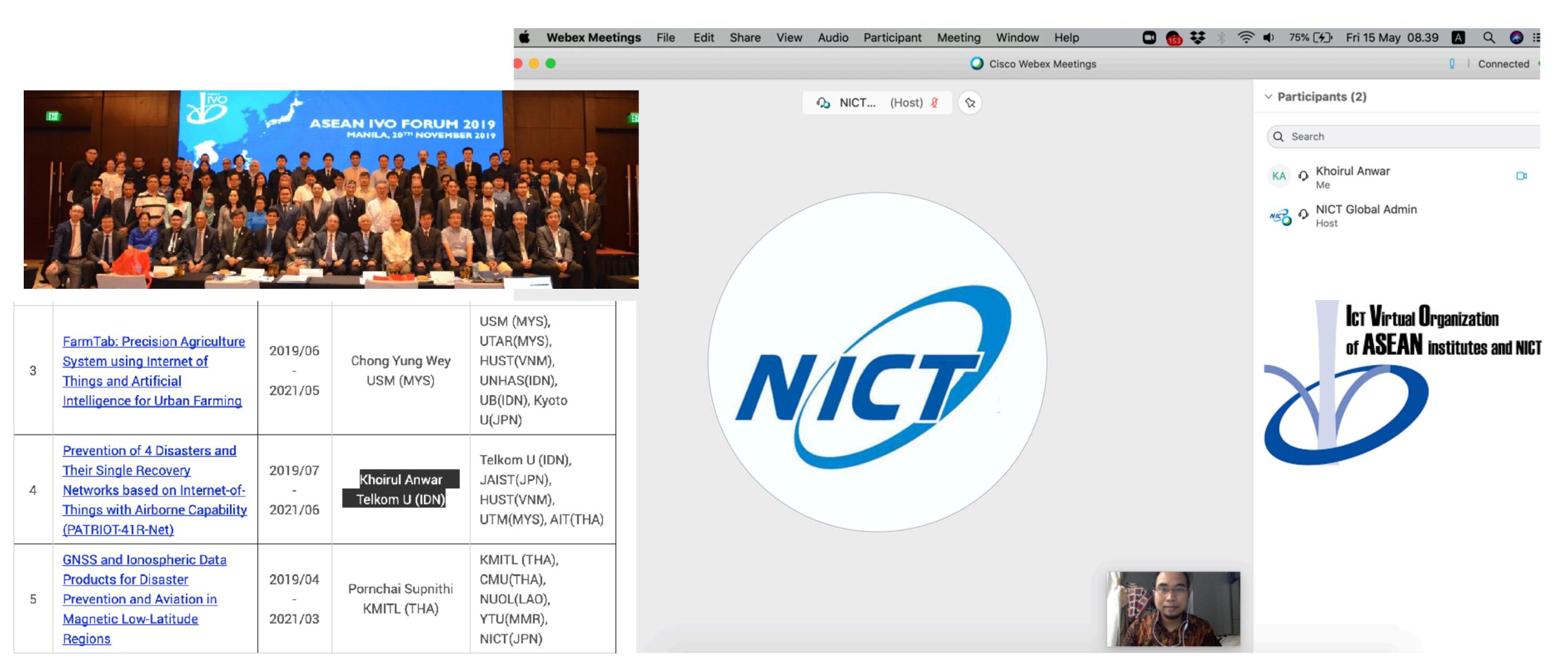
An Example of International Collaboration This Month

White Paper on Critical and Massive Machine Type Communication Towards 6G

Editors: Nurul H. Mahmood, Onel Lopez, Ok-Sun Park,
Ingrid Moerman, Konstantin Mikhaylov, Eric Mercier, Andrea Munari,
Federico Clazzer, Stefan Böcker and Hannes Bartz.
Contributors: Nurul H. Mahmood, Stefan Böcker, Andrea Munari,
Federico Clazzer, Ingrid Moerman, Konstantin Mikhaylov, Onel Lopez,
Ok-Sun Park, Eric Mercier, Hannes Bartz, Riku Jäntti,
Ravikumar Pragada, Yihua Ma, Elina Annanperä, Christian Wietfeld,
Martin Andraud, Gianluigi Liva, Yan Chen, Eduardo Garro,
Frank Burkhardt, Hirley Alves, Chen-Feng Liu, Yalcin Sadi,
Jean-Baptiste Dore, Eunah Kim, JaeSheung Shin, Gi-Yoon Park,
Seok-Ki Kim, Chanho Yoon, Khoirul Anwar and Pertti Seppänen

May 5, 2020

FLAGSHIP


UNIVERSITY OF OULU										1.0														
	•	•	•	•	•	•	•		•		•	-	~	٠.	•	•	•	•	•	•	•	•	•	10
																								10
tec	etu	ıre	9																					10
ati	or	\mathbf{is}	fo	r	60	G	m	1N	Π	C	1													11
n																								12

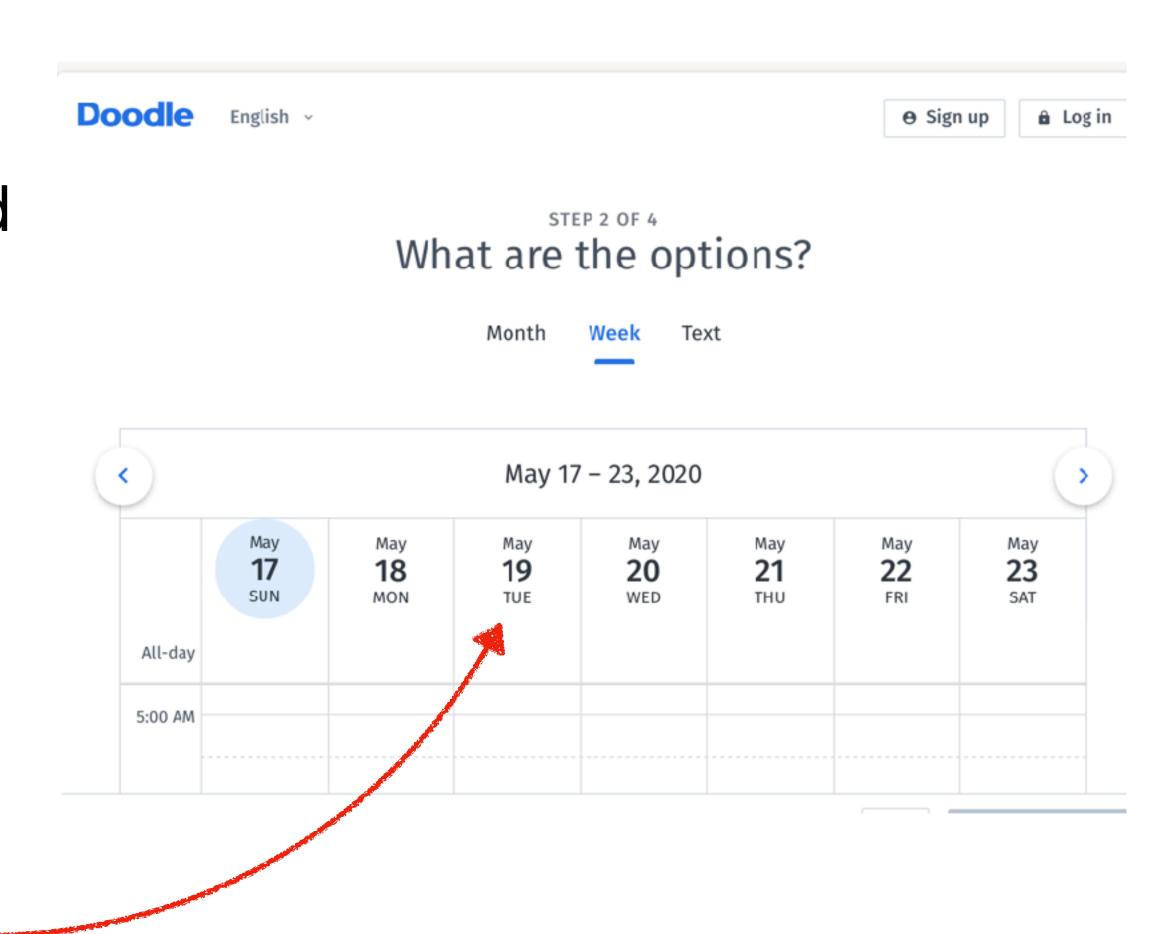
lhuda.mahmood@oulu.fi), O. Lopez, K. Mikhaylov, C.-F. University of Oulu, Finland. I. Moerman is with imec - G.-Y. Park, S.-K. Kim and C. Yoon are with ETRI, South

with German Aerospace Center (DLR), Germany. S. Böcker and C. Wietfeld are with TU Dortmund, Germany. R. Jäntti and M. Andraud are with Aalto University, Finland. R. Pragada is with InterDigital, USA. Y. Ma is with ZTE, China. Y. Chen is with Huawei Technologies, Canada. E. Garro is with Universitat Politècnica de València, Spain. Y. Sadi is with Kadir Has University, Turkey. F. Burkhardt is with Fraunhofer IIS, Germany. K. Anwar is with Telkom University, Indonesia.

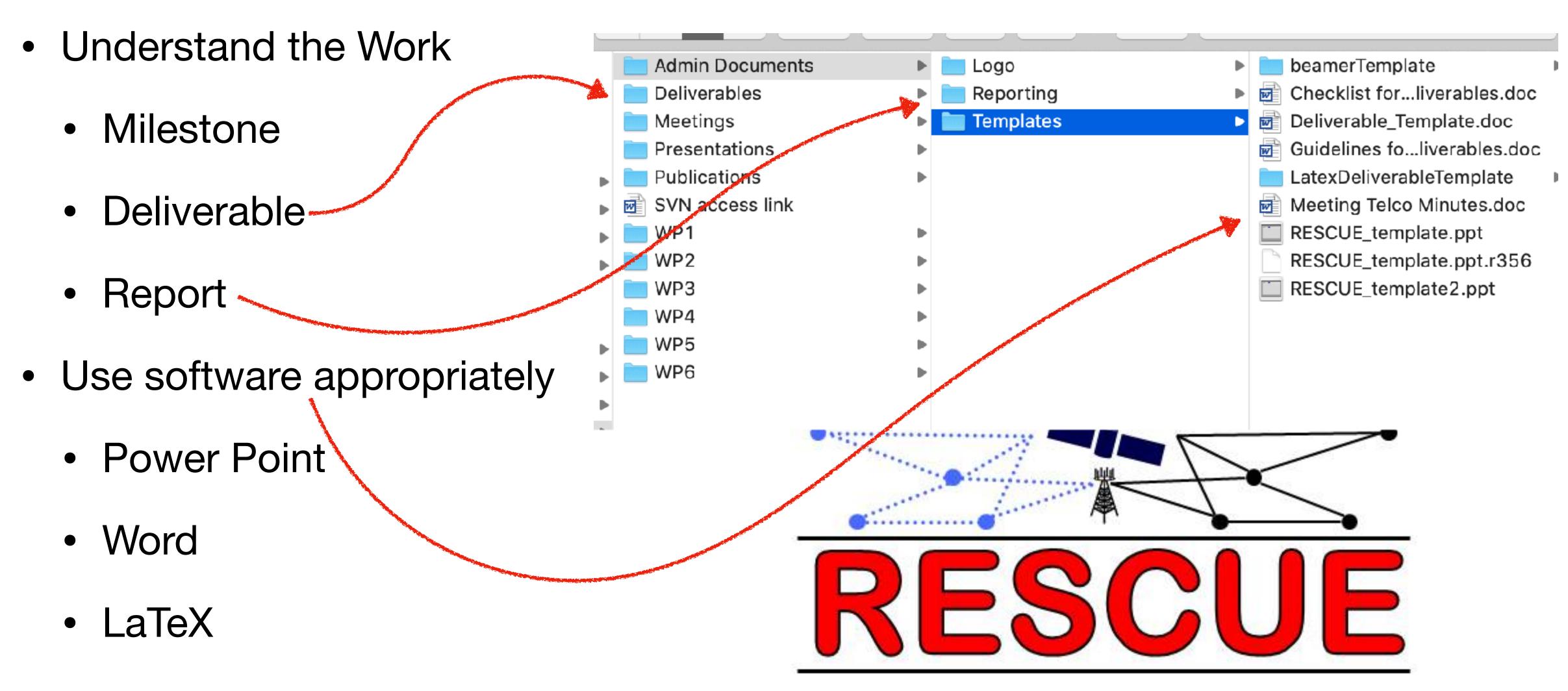
An Example of International Collaboration Yesterday

Making High Quality International Collaboration (1/3)

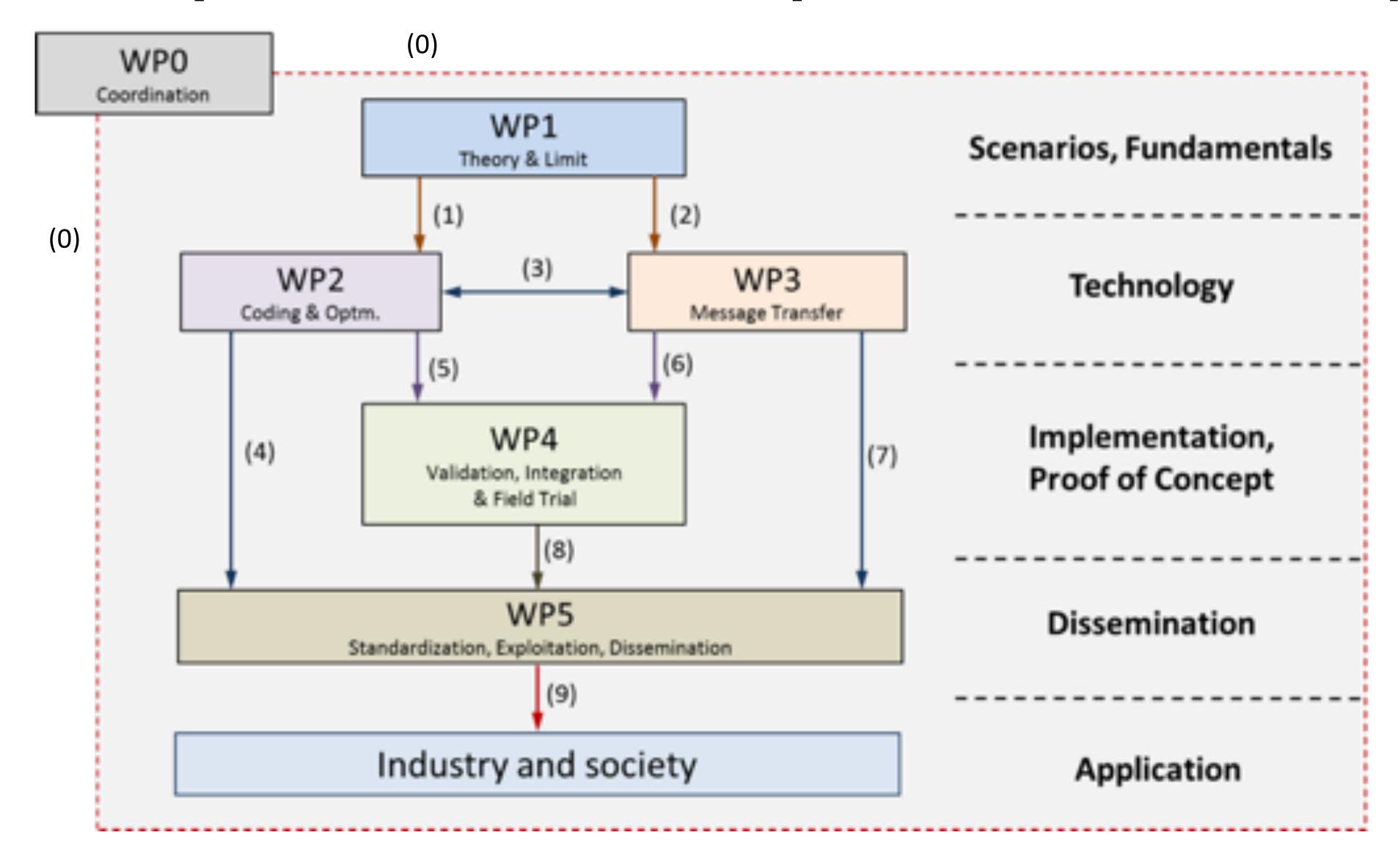
- Improve yourself
 - High quality of research: Interesting, Up to date
 - High quality publications: high reputed journals, good in English
- Visit international meeting
 - International Conferences
 - International Meeting/Lecture
 - Start Communications


IEEE Global Communications Conference

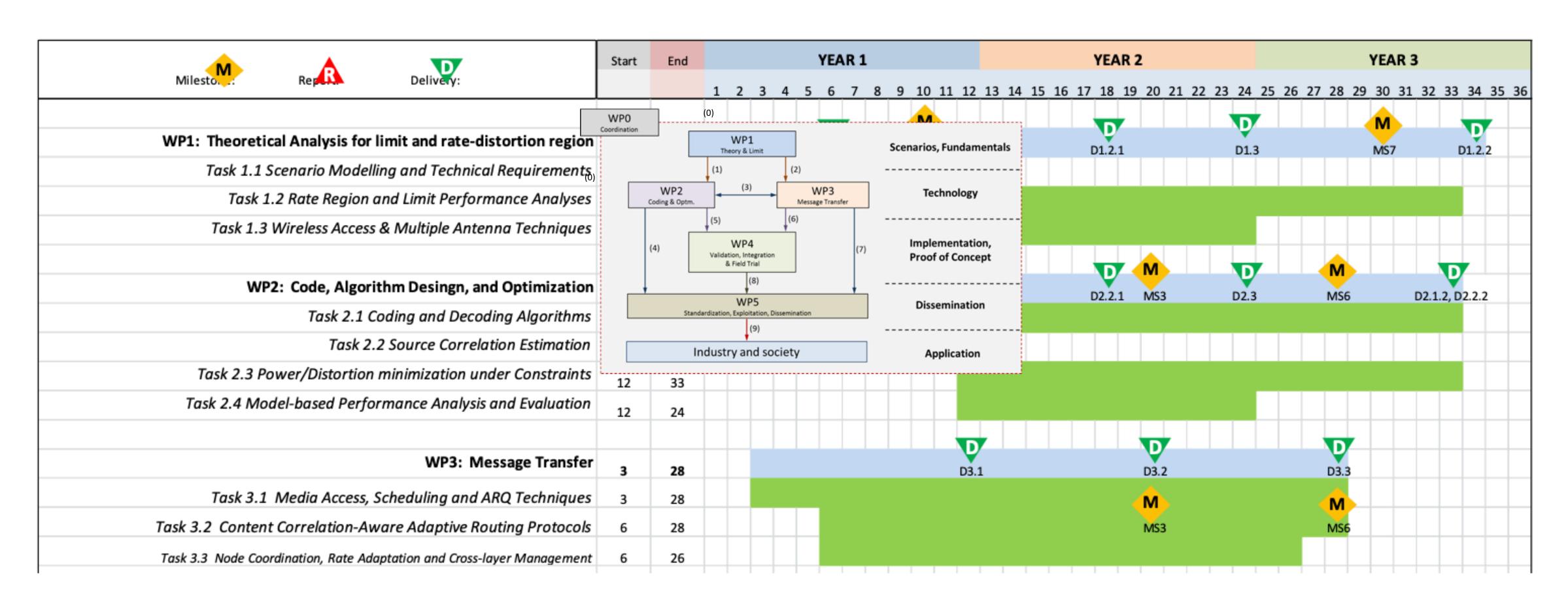
7-11 December 2020 // Taipei, Taiwan Communications for Human and Machine Intelligence

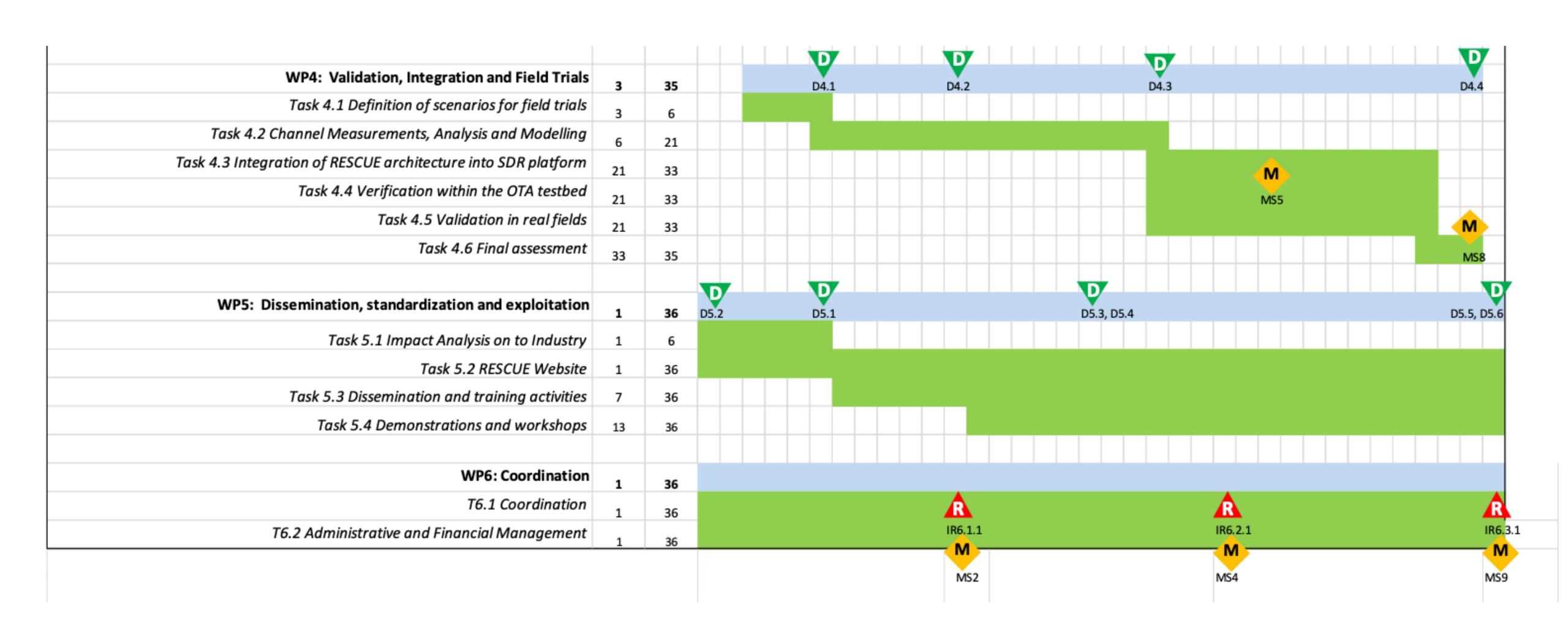

Making High Quality International Collaboration (2/3)

- Set a goal and offer a work
 - Try to accept other ideas when it is good
 - Offer a work
- Meeting is a source of success in team
 - Set frequent meeting
 - Use online schedule —> doodle
 - Keep the date



Making High Quality International Collaboration (3/3)


The Most Important Part in A Proposal: Coordination (1/3)


The Most Important Part in A Proposal: Coordination (2/3)

The Gantt chart for RESCUE is presented in Erreur! Source du renvoi introuvable. below.

The Most Important Part in A Proposal: Coordination (3/3)

Example of An International Scoring (1/3)

Evaluation Summary Report

Evaluation Result

Total score: 13.50 (Threshold: 10.00)

Form information

For each criterion under examination, score values indicate the following assessments. Half point scores may be given:

- **0** The proposal fails to address the criterion under examination or cannot be judged due to missing or incomplete information.
- 1- Poor. The criterion is addressed in an inadequate manner, or there are serious inherent weaknesses.
- 2- Fair. While the proposal broadly addresses the criterion, there are significant weaknesses.
- 3- Good. The proposal addresses the criterion well, although improvements would be necessary.
- 4- Very good. The proposal addresses the criterion very well, although certain improvements are still possible.
- 5- Excellent. The proposal successfully addresses all relevant aspects of the criterion in question. Any shortcomings are minor.

Criterion 1 - Scientific and/or technological excellence (relevant to the topics addressed by the call)

Score: 5.00 (Threshold: 3.00/-, Weight: -)

The concept of the proposal is sound and novel. The quality of the objectives are very clear, relevant and of high quality with regard to the call targets. The proposed project will take into account recent advances in the field of communication theory e.g. distributed turbo coding and turbo processing, multi-terminal communications, joint source-channel coding and communications in the presence of lossy links.

The state-of-the-art is adequately described. The proposed project will make significant progress beyond the state-of-the-art in related research fields, namely: information theory with special emphasis on network information theory and rate distortion theory, distributed joint source/channel coding over lossy wireless networks and advanced signal processing techniques and (turbo) decoding algorithms.

Example of An International Scoring (2/3)

The quality and effectiveness of the S/T methodology and the associated work plan are very good.

Criterion 2 - Quality and efficiency of the implementation and the management

Score: 4.50 (Threshold: 3.00/-, Weight: -)

The proposed management structure and procedures are appropriate for the proposed project. However, conflict resolution and IPR management are only briefly described. An appropriate risk and contingency plan has been described although it is not very detailed.

The quality and relevant experience of the individual participants are very good. The key people in the project have strong knowledge and experience as also reflected in the list of references with regard to information theory, space-time signal processing, cooperative communications, MAC/network protocols for mesh and ad-hoc networks, etc.

The quality of the consortium as a whole is good and they have the operational capacity to carry out the work. The consortium is well balanced between academia and industrial partners and includes one SME.

The allocation and justification of the resources to be committed are in general appropriate. However, resources are not sufficiently allocated to the scientific partners to actively participate in the demonstration and validation activities (WP4).

Example of An International Scoring (3/3)

Criterion 3: Potential impact through the development, dissemination and use of project results

Score: 4.00 (Threshold: 3.00/-, Weight: -)

The proposed project will contribute to the expected impact defined in the ICT Work programme especially in the fields of Future Internet Technologies, mobile and wireless and broadband systems and network management technologies. The proposed project addresses important issues regarding better communication possibilities in case of e.g. disasters and vehicle-to-vehicle communications, in addition to other conventional systems where relaying is envisaged.

The dissemination activities are described appropriately and are mainly foreseen to the publishing of the results in papers, conference contributions, workshops, the web-site etc. The project will cooperate with the existing well known project 5GNOW and this will be very beneficial. The IPR management is generic and will be detailed in the consortium agreement.

Exploitation of results is adequately described in the proposal. The proposal is likely to produce high quality scientific results in fields where many open questions remain.

Remarks

The timing between some of the tasks in WP2 and WP4 are not fully clear from the proposal. It is not sufficiently described why WP3 is mainly focused on the MAC and NET layers.

Cooperation with currently running IP METIS project would be beneficial.

It would be beneficial to the consortium if they include people from device or network device manufacturing companies in e.g. an advisory board or dedicated dissemination activities.

The Japanese partner inclusion is justified.

Ethics issues

Status: No ethical issues

Some Useful Aspects

Leader: Support them

Trust to your WP team

Partner: Assist them

image: pgi.com

Conclusions

- At least 8 points of strategy are required:
 - 1. Good Proposal as a whole
 - 2. Convincing Partners
 - Partner 1: Manufactures and
 - Partner 2: Users
 - 3. Clear Output
 - 4. Good Work Package
 - 5. Good Project Management
 - 6. Good Abstract
 - 7. Good Figure
 - 8. Convincing Data
- High quality Bahasa and English writing is needed.
- The most important part in an international research collaboration is coordination.
- Scheduled meeting must be kept to make sure that everything is going on the track.